Carboxylic Acid Amides (CAA) Working Group

Annual Meeting 2017 on December 12th

Protocol of the discussions and recommendations of the CAA Working Group of the Fungicide Resistance Action Committee (FRAC)

Participants

Gerd Stammler (Chairman)
BASF SE, Limburgerhof, Germany

Nadine Riediger
BASF SE, Limburgerhof, Germany

Andreas Mehl
Bayer AG, Monheim, Germany

Daniela Portz
Bayer AG, Monheim, Germany

Sophie Huvier-Boutin (excused)
Bayer AG, Monheim, Germany

Pauline Leroux
Belchim Crop Protection, Brussels, Belgium

Peter Adriaansen (excused)
Belchim Crop Protection, Brussels, Belgium

Martin Huttenlocher (excused)
ADAMA, Köln, Germany

Yu Aoki
K-I Chemical, Brussels, Belgium

Stefano Torriani
Syngenta, Basel, Switzerland

Anna Dutton
Syngenta, Basel, Switzerland

Steve Dale
Syngenta, Basel, Switzerland

Venue:
Lindner Congress Hotel, Frankfurt am Main, Germany

Anti-trust guidelines (from FRAC constitution) were shown at the start of the meeting

Source: www.frac.info
December 2017
1. Introduction

The FRAC CAA Working Group was set up in 2005 to generate common resistance management recommendations for the Oomycete fungicides dimethomorph, flumorph, pyrimorph, benthiavalicarb, iprovalicarb, valifenalate and mandipropamid.

All of the above-mentioned fungicides exhibit cross resistance and are grouped under the FRAC Code No. 40 in the FRAC Code List.

<table>
<thead>
<tr>
<th>CODE</th>
<th>TARGET SITE OF ACTION</th>
<th>GROUP NAME</th>
<th>CHEMICAL GROUP</th>
<th>COMMON NAME</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Cellulose synthesis</td>
<td>CAA-fungicides (Carboxylic acid amides)</td>
<td>cinnamic acid amides</td>
<td>dimethomorph flumorph pyrimorph</td>
<td>Low to medium risk. Resistance management required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>valinamide carbamates</td>
<td>benthiavalicarb iprovalicarb valifenalate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mandelic acid amides</td>
<td>mandipropamid</td>
<td></td>
</tr>
</tbody>
</table>

As shown in the table, the group name Carboxylic Acid Amides (CAA) has been chosen. This name best represents compounds from three different chemical groups.

The mode of action of CAA compounds is directly linked to the inhibition of cellulose synthesis in the Oomycete plant pathogen (Blum et al. 2010, Molecular Plant Pathology 11, 227-243). Uptake studies with 14C labeled mandipropamid (MPD) showed that this Oomycete control agent acts on the cell wall and does not enter the cell. Furthermore, 14C glucose incorporation into cellulose was perturbed in the presence of MPD. Gene sequence analysis of cellulose synthase genes in laboratory mutants, insensitive to MPD, revealed two point mutations in the PiCesA3 gene, known to be involved in cellulose synthesis. Both mutations in the PiCesA3 gene result in a change to the same amino acid (Glycine-1105) in the protein.

Sensitivity monitoring studies over several years revealed that in populations of the late blight pathogen, Phytophthora infestans, all isolates were fully sensitive to CAA fungicides. However, in populations of the grape downy mildew pathogen, Plasmopara viticola, isolates can be found in certain regions, which are resistant to all CAA fungicides.

Inheritance studies (Gisi et al. 2007, Plant Pathology 56, 199-208) showed that sexual crosses between sensitive and CAA resistant isolates of Plasmopara viticola lead to a co-segregation of resistance to dimethomorph, iprovalicarb, benthiavalicarb and mandipropamid, but not to the phenylamide, mefenoxam, which was tested in parallel as an independent marker.

Further, the inheritance studies showed that the gene(s) for resistance to CAA fungicides are inherited in a recessive manner. Therefore, the entire F1 generation of crosses between sensitive and CAA resistant isolates was sensitive, and only in the F2 progeny did CAA resistance reappear in some isolates. These results suggest that the resistance risk can be classified as moderate (as compared to high for phenylamide and QoI fungicides) and that it can be managed by appropriate product use strategies (see below).

Source: www.frac.info
December 2017
2. Resistance Monitoring 2017

2.1. *Plasmopara viticola* – Grape downy mildew

Disease incidence
In 2017, disease pressure was low in the main grape growing areas of Europe.

Monitoring results
(BASF, Bayer, Belchim, K-I Chemical, Syngenta)

France
As in the years before, CAA resistant isolates have been detected consistently in most areas. High frequencies of resistance were detected in Armagnac, Cognac and Savoie, moderate to high frequencies in Midi-Pyrenees, Champagne, Bourgogne and Beaujolais. Moderate frequencies were detected in Bordeaux, Val de Loire, Languedoc, Alsace and Lorraine, low to moderate frequencies in Provence and Val du Rhone.

Germany
High frequencies of resistance were found in Mosel, Main-Franken, Württemberg and Rheinhessen. Moderate frequencies were observed in Baden and Pfalz.

Switzerland
High values were detected in Graubünden, moderate to high values in Vaud and Geneva. Moderate resistance values were detected in Ticino and Wallis.

Austria
High values were detected in Steiermark, moderate to high values in Wachau, low values in Weinviertel and no resistance was found in Burgenland.

Italy
High frequencies of resistance were observed in Alto Adige, Trentino and Piemonte, moderate to high values in Friuli and Veneto, moderate values in Emilia Romagna, Marche and Toscana, low values in Lombardia.

Spain:
Moderate frequencies of resistance were found in Basque and Galicia region, low values were detected in Leon.

Portugal
Low values of CAA resistance were detected in Portugal. The majority of samples was fully sensitive.

Greece
No resistance was detected in Greece.

Slovenia
Samples from Slovenia contained low frequency values of CAA resistance.

Hungary
Samples from Hungary contained low to moderate frequency values of CAA resistance.

Source: www.frac.info
December 2017
Czech Republic
No monitoring data were presented for 2017. In 2016 sensitivity monitoring showed low frequencies of CAA resistance.

Slovakia and Romania
No monitoring data were presented for 2017. In 2016 sensitivity monitoring showed low frequency of CAA resistance in both countries.

Bulgaria
No monitoring data were presented for 2017. In 2016 sensitivity monitoring showed no CAA resistance.

Field performance
Field performance of registered products was good when applied in spray programmes using timely preventive applications, according to the FRAC recommendations.

2.2. Phytophthora infestans – Late blight of potatoes

Disease incidence
In 2017, disease pressure was low in potatoes in the main growing areas of Europe.

Monitoring results
(BASF, Belchim, KI Chemicals and Syngenta)

Sensitivity monitoring programs in 2017 did not detect less sensitive strains of *Phytophthora infestans* in potatoes and tomatoes in Europe (Belgium, Czech Republic, Denmark, France, Germany, Greece, Hungary, Italy, Latvia, Netherlands, Poland, Portugal, Romania, Slovakia, Spain, Switzerland, UK) and in 2016 in China (Hebei, Inner Mongolia). These studies document that populations of *Phytophthora infestans* are fully sensitive to CAA fungicides and confirm the observations of previous years.

Field performance
Field performance of registered products in potatoes and tomatoes was good when applied in spray programmes using timely preventive applications.

2.3. Pseudoperonospora cubensis - Downy mildew of cucurbits

Sensitivity monitoring programs in 2015 were carried out in Europe. No resistance has been detected in France, Italy and Poland. A case of CAA resistance was observed in Spain.

2.4 Bremia lactucae – Downy mildew of lettuce
(Syngenta, BASF)

Sensitivity studies were done with samples from 2013-2015 from France, Italy, Germany and Spain. All samples tested were sensitive.
In 2016, genetic analysis of the cesA3 gene showed that all samples from Spain, Germany and UK did not contain any known mutation potentially causing CAA resistance and were therefore classified as sensitive.
Monitoring studies for 2017 are still ongoing.

2.5 *Peronospora destructor* - Downy mildew of onions
(BASF)

Genetic analysis of the cesA3 gene in 2016 showed that all samples from Germany did not contain any known mutation potentially causing CAA resistance and were therefore classified as sensitive.

3. Use Recommendations

3.1. *Plasmopara viticola* – Grape downy mildew

Plasmopara viticola is classified by FRAC as a high-risk pathogen. Long-term experience with CAA fungicides demonstrates that the resistance risk of *Plasmopara viticola* to this fungicide group is moderate and can be managed through appropriate use strategies.

Use Recommendations:

- Apply CAA fungicides preferably in a preventive manner
- Apply a maximum of 50% of the total number of intended applications for disease control not exceeding a total of 4 CAA fungicide sprays during one crop cycle. In areas of high resistance, the total number should not exceed a maximum of 3 applications during one crop cycle
- Always apply CAA fungicides in mixture with effective partners such as multi-site or other non-cross resistant fungicides
- An effective partner for a CAA fungicide is one that provides satisfactory disease control when used alone at the mixture rate
- Alternation with fungicides having other modes of action is recommended in spray programs

For more detailed product recommendations refer to the use guidelines published by the respective CAA manufacturers.
3.2. *Phytophthora infestans* – Late blight of potato and tomato

No resistant isolates from field populations have been found since the introduction of CAA fungicides in 1993.

Phytophthora infestans is classified by FRAC as a medium risk pathogen. Long-term experience with CAA fungicides demonstrates that the resistance risk of *Phytophthora infestans* to this fungicide group is low to moderate. For effective resistance management, a precautionary strategy has to be implemented.

Use Recommendations:

- Apply CAA fungicides preferably in a preventive manner
- Apply a maximum of 50 % of the total number of intended applications for late blight control
- Alternation with fungicides having other modes of action is recommended in spray programs

For more detailed product recommendations refer to the use guidelines published by the respective CAA manufacturers.

3.3. *Pseudoperonospora cubensis* – Downy mildew of cucurbits

Pseudoperonospora cubensis is classified by FRAC as a high risk pathogen.

Use Recommendations:

- Apply CAA fungicides preferably in a preventive manner
- Apply a maximum of 50 % of the total number of intended applications for disease control not exceeding a total of 4 CAA fungicide sprays during one crop cycle. In areas of high resistance, the total number should not exceed a maximum of 3 applications during one crop cycle
- Always apply CAA fungicides in mixture with effective partners such as multi-site or other non-cross resistant fungicides
- An effective partner for a CAA fungicide is one that provides satisfactory disease control when used alone at the mixture rate
- Alternation with fungicides having other modes of action is recommended in spray programs

For product recommendations refer to the use guidelines published by the respective CAA manufacturers.
3.4. Other Oomycete pathogens

Some of the downy mildew pathogens are classified by FRAC as moderate risk pathogens (e.g. *Bremia lactucae*). In spite of the use of CAA fungicides for more than 15 years against a range of such Oomycete pathogens, no reports on the occurrence of less sensitive field populations are available.

For effective resistance management, a precautionary strategy has to be implemented.

Use Recommendations:

- Apply CAA fungicides preferably in a preventive manner
- Apply a maximum of 50% of the total number of intended applications for disease control
- Alternation with fungicides having other modes of action is recommended in spray programs

For more detailed product recommendations refer to the use guidelines published by the respective CAA manufacturers.

4. Chairman election

Gerd Stammler was confirmed as the chair of the CAA FRAC Working Group.

5. Next Meeting

Next annual meeting is planned for December 11th, 2018.