Azanapthalene (AZN) Working Group

Annual Meeting February 20th, 2015

Protocol of the discussions and recommendations of the AZN Working Group of the Fungicide Resistance Action Committee (FRAC)

Participants

Greg Kemmitt (Chairman) Dow AgroSciences, UK
Jean-Luc Genet DuPont, France
Przemyslaw Szubstarski DuPont, Poland
Grazyna Jaworska DuPont, France

Venue:
Teleconference

1. Resistance Monitoring 2014

1.1 Wheat powdery mildew (*Blumeria graminis* f.sp. *tritici*)
(Results generated by DuPont for proquinazid)

Routine monitoring for quinoxyfen was started using airborne spore trapping in 1996 and was discontinued in 2006. Isolates with reduced sensitivity to quinoxyfen were first detected in Northern Germany in 2001 and a year later in France and the UK. The frequency of these isolates was seen to vary significantly between monitored regions within countries and also from year to year over the period of monitoring from 2002 – 2006.
Routine monitoring for proquinazid has been conducted annually since 2006 in UK, France, Germany, Poland, Czech Republic, Hungary, Italy and Sweden.

Isolates able to grow in the laboratory at a discriminatory dose of proquinazid controlling baseline isolates have been found at levels which vary between regions and seasons.

Where isolates are sometimes found one year growing at the discriminatory dose, they may not be detected in that region the following year.

In 2014, these isolates were primarily found in East Anglia and SE Scottish regions of the UK and in Northern Germany. Isolates able to produce slight growth at the discriminatory dose continue to be detected in Sweden. In other countries the frequency of isolates growing at this dose remains low. The EC$_{50}$ values of the least sensitive isolates collected in 2014 remained very low.

Field performance with proquinazid was not affected and there were no complaints.

1.2 Grape powdery mildew (*Erysiphe necator*)
(Results generated by DuPont, Dow)

Monitoring has been conducted on an annual basis in Germany, Austria, Switzerland, France, Italy, Romania, Hungary, Spain and Portugal since 2003 for quinoxyfen and since 2007 for proquinazid.

No significant change of overall EU wide sensitivity of the population was recorded in 2014 compared to 2013.

As in previous years, adapted isolates able to grow actively at a discriminatory dose of either proquinazid or quinoxyfen which controls baseline isolates have been widely found across Europe. The frequency of these isolates has been seen to vary significantly between monitored regions within countries and also from year to year over the period of monitoring from 2003 – 2014. The degree of adaptation from low to moderate to high as classified according to level of growth observed at the discriminatory test doses is also seen to vary across countries and within regions from year to year.

In 2014, strongly adapted isolates were found in the Trentino, Emilia Romagna, Alto Adige, Veneto, Apulia and Lombardy regions of Italy. The Burgundy, Champagne, Gascony/Armagnac and Charente/Cognac areas of France. In the Burgenland, Wachau and Weinviertel regions in Austria and the lake Geneva area of Switzerland. In Northern Western and Eastern Hungary. In the Mosel, Rheinhessen, Neckar, Nahe, Pfalz, and Wurzburg regions of Germany. In the Rioja region of Spain and the Ribatejo region of Portugal for the first time.

In 2014 strongly adapted isolates were not detected in the Baden/Breisgau region in Germany. The Tuscany region in Italy. The Bordeaux, Loire, Languedoc and Rhone
regions in France. The Barania region in Hungary. The Douro, Torres Vedras, Alentejo, Algarve, Dao and Beja regions in Portugal and the Cadiz, Castile and Leon, Navarra and Catalonia regions of Spain.

1.3 Cucurbit powdery mildew (*Podosphaera fusca*)

A quinoxyfen sensitivity baseline was established using isolates collected between 2002 and 2004 in Southern Spain prior to the commercial launch of quinoxyfen in cucurbits in 2006.

No monitoring was conducted in 2014. Field performance remains as expected when the product is used according to label recommendations.

2. Use Recommendations

2.1 Recommendations for cereals

- Apply Group 13 fungicides preventatively.

- Apply a maximum of 2 Group 13 fungicides containing sprays per crop solo or in mixture (co-formulations or tank mixes) with effective mixture partners from different cross-resistance groups.

- If a second application is needed, it should be in tank-mix with an effective powdery mildewicide with another mode of action.

- Always follow product specific label recommendations for resistance management.

2.2 Recommendations for grapes

- Apply Group 13 fungicides preventatively.

- Group 13 fungicides must be applied in spray programs with fungicides of a different mode of action.

- Apply a maximum of 3 Group 13 fungicide containing sprays per season, solo or in mixture (co-formulations or tank mixes) with effective mixture partners from different cross-resistance groups.
• Do not exceed 2 consecutive applications of Group 13 fungicides per season.

• Always follow product specific label recommendations for resistance management.

2.3 Recommendations for cucurbits, fruiting vegetables and strawberries

• Apply Group 13 fungicides preventatively.

• Group 13 fungicides must be applied in spray programs with fungicides of a different mode of action.

• The number of sprays of group 13 fungicides per crop should not exceed 50% of the total number of powdery mildew sprays per season, solo or in mixture (co-formulations or tank mixes) with effective mixture partners from different cross-resistance groups.

• Do not exceed 2 consecutive applications of Group 13 fungicides per season.

• Always follow local product specific label recommendations for resistance management.

3. Next Meeting

The next annual meeting is planned for February, 2016.

The content or data found in this document is copyright protected by the Fungicide Resistance Action Committee. © Copyright 2015 Fungicide Resistance Action Committee.